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Abstract

In this paper we explore how functional and anatomical constraints and
resource optimization could be combined to obtain a canonical cortical
micro-circuit and an explanation for its laminar organization. We start
with the assumption that cortical regions are involved in Bayesian Belief
Propagation. This imposes a set of constraints on the type of neurons and
the connection patterns between neurons in that region. In addition there
are anatomical constraints that a region has to adhere to. There are sev-
eral different configurations of neurons consistent with both these con-
straints. Among all such configurations, it is reasonable to expect that
Nature has chosen the configuration with the minimum wiring length.
We cast the problem of finding the optimum configuration as a combi-
natorial optimization problem. A near-optimal solution to this problem
matched anatomical and physiological data. As the result of this inves-
tigation, we propose a canonical cortical micro-circuit that will support
Bayesian Belief Propagation computation and whose laminar organiza-
tion is near optimal in its wiring length. We describe how the details of
this circuit match many of the anatomical and physiological findings and
discuss the implications of these results to experimenters and theorists.

1 Introduction

Perceptual systems have to deal with uncertain information in the world. Thus Bayesian
techniques have come to be widely viewed as learning and inference mechanisms em-
ployed by the cortex. Bayesian Belief Propagation (BBP) introduced by Pearl [6] is among
the most successful inference algorithms in computer vision and machine learning. In [5]
Lee and Mumford suggest that cortical regions could actually be doing BBP computations,
without giving details of the required mechanisms. Recent work by Rao [7] and Deneve
[2] show that Bayesian Belief Propagation can be implemented in spiking neurons. They
did not investigate an anatomical connection and treated single neurons as the BBP com-
putation engine there by restricting them to encode binary states. What are the neural and
anatomical substrates of the Bayesian computations employed by neo-cortex?

The neo-cortex in mammals is believed by many to have a surprisingly prototypical archi-



tecture that remains consistent across different species [3]. In all the examined species, the
neurons in the cortical sheet are organized in to 6 layers, with the top layer mostly filled
with axons [9]. Several researchers have proposed canonical cortical circuits [3] that are
replicated all over cortex. Is there a canonical cortical circuit for Bayesian Inference? If
yes, is that circuit related to the prototypical laminar organization of the cortex?

Many researchers have explored the role of wiring length minimization in the organization
of neocortex. [10] [1] [8]. The positioning of cortical regions in 3 dimensional space
obtained as a result of wiring length optimization matched the positioning of cortical areas
on the cortical surface [1]. Does the laminar organization of neurons within the cortical
regions, also follow from such a principle?

In this paper we investigate these questions by combining the principles of BBP compu-
tations with anatomical constraints and wiring length optimization. The requirement that
a cortical region should implement Bayesian Belief Propagation sets a set of constraints
on the type of neurons and the connections patterns between neurons in that region (Sec-
tion 2). Moreover there are anatomical constraints that a region has to adhere to (Section
3). There are several different configurations of neurons consistent with both these con-
straints (Sections 3). Among all such configurations, it is reasonable to expect that Nature
has chosen the configuration with the minimum wiring length. We show how to calculate
the wiring lengths for these configurations and explore the solution space (Section 4). As
a result of this investigation, we propose a canonical cortical micro-circuit that will sup-
port BBP computation and whose laminar organization is near optimal in its wiring length.
We discuss how the details of this circuit match many of the anatomical and physiological
findings (Section 5). These results have several anatomical and physiological implications
(Section 6).

2 Bayesian Belief Propagation, Cell Types and Connections

In this section we describe the assumptions involved in the mapping of a Bayesian Network
to the cortical Hierarchy. Every region of the cortex can be thought of as maintaining
a set of hypotheses in relation to the concepts encoded by its surrounding regions. The
hypotheses at a higher region in the cortex are causally linked to the ones in the lower
level. The set of hypotheses encoded by a region can be considered a random variable,
with cortical columns encoding its particular values. Each region maintains the association
of its hypotheses with the causes in a probability table. Observed information anywhere
in the cortex can alter the probability values associated with hypotheses maintained every
where else. This is done through Bayesian Belief Propagation. In general, the networks
can have loops, and we assume that the inference is done through loopy BP. This does not
affect our results.

With these broad assumptions, the inputs and outputs of a region of cortex can be mapped
to Belief Propagation messages. A cortical region receives input messages from regions
hierarchically above and below it, through feed-forward and feedback connections. The
role of the cortical region is to update its Belief based on these messages and to derive the
messages to be sent to its parents and children using outgoing connections. These computa-
tions are performed using the Bayesian Belief Propagation equations shown below. These
equations were adapted from [6] and are for singly connected tree structured networks. We
assume this type of topology for the rest of this paper.

λ(xk) =
∏
j

λYj (xk) (1)

λX(um) =
∑

x

λ(x)P (x|um) (2)
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Figure 1: (a) Inputs and outputs of a node in Bayesian Belief Propagation. (b) Cortical sheet and
its position with restpect to white matter and the skull (c) Idealization of a slice of a cortical region
corresponding to the rectangle in (b). At the top is the skull and at the bottom the white matter.
Different cortical layers are oriented horizontally. Each square in the grid can hold one neuron(cell).

π(xk) =
∑

u

P (xk|u)πX(u) (3)

BEL(xk) = αλ(xk)π(xk) (4)

πYj
(xk) = απ(xk)

∏
i 6=j

λYi
(xk) (5)

These equations are described with respect to a region which encodes X with 2 child re-
gions encoding Y1 and Y2 and a parent region encoding U , as illustrated in figure 1(a).
The feed-forward input axons and feed-forward output axons carry the λ messages and the
feedback axons carry the π messages.

Implementing the Bayesian Belief Propagation Equations in a cortical region will require
a diverse set of neurons with different formats of connections. We postulate the existence
of 5 types of cells for the implementation of the 5 equations given above. Cell type 1 C1

is the recepient of the feedforward messages from child regions. A set of such cells do the
operation defined in equation 1. This is illustrated in figure 2(a). These cells multiply their
inputs together and they do not have weights associated with their synapses.

C2 is a set of cells which implement equation 2. These cells receive inputs from the C1

cells defined above. The synapses of these cells implement a sum-product operation. The
synapse from cell C1,i to cell C2,j stores the weight P (xi|uj). This is illustrated in fig-
ure 2(b). C2 cells send their feed-forward outputs to higher level cortical regions via the
message λX .

The inputs to C3 cells are the feed-back messages from higher level cortical areas. These
messages are converted to the language of the local cortical region according to equation
3. Similar to C2 cells, these cells also have synaptic weights. The synapse between cell
C3,i and the feedback axon uj stores the weight P (xi|uj). The outputs of cells C3 are
processed internal to the region.

The Belief of a region, according to equation 4 are calculated at the output of cells C4.
These cells receive their inputs from cells C1 and cells C3 and combine them multiplica-
tively to obtain the Belief value according to equation 4. This is illustrated in figure 2(c).

Cells of type 5, C5 project to child regions and carry the feedback messages to those re-
gions. According to equation 5, the feedback message is specific to child regions. Hence
there will be as many type groups of C5 cells as there are child regions. These cells com-
bine a selected portion of feed-forward messages along with the outputs of cells C3 to form
feedback messages.

As described above, implementing the Belief Propagation Equations in a neuronal circuit
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Figure 2: (a) to (d) show the different neuron types and the connections between them arising out
of equations 1 to 4. These connection constraints can be encoded as a matrix B (see text).

automatically imposes a constraint on the connectivity between the elements of the circuit.
This connectivity constraint can be expressed in the form of a connection matrix B with
the neuronal elements and the input and output axon labels along the rows and columns of
this matrix.

3 Spatial arrangement of cells within a cortical region

Cortical regions are arranged on a thin sheet covering the white matter. On one side of
a cortical sheet is the skull and on the other side the white matter. Hence all the input
(output) axons of a cortical region enter(exit) the cortical region via the white-matter side
(figure 1b). We can approximate a slice of a region of cortex as a rectangular box with all
the inputs and outputs interfacing at the bottom of the rectangle. What would be the best
way to arrange the cells within this slice of cortex?

Note that we can achieve the functionality of Bayesian Belief Propagation as long as we
maintain the correct connectivity among the neurons. However, different spatial arrange-
ments of these neurons will use different wiring lengths to maintain this connectivity. It
is reasonable to assume that among all configurations with the same functionality, Nature
would choose the one with the minimum requirement of resources. This enables us to cast
the problem of placing the neurons within a cortical region as an optimization problem.

Minimize
∑

(i,j)∈B

||xi − xj ||1 (6)

subject to no overlap between cells (7)

where xi and xj correspond to the spatial locations of terminals and B is the connection
constraints matrix. Although the objective in this problem is convex, solving this with
problem with non-overlap constraints involve a combinatorial optimization.

We can use known facts about cortical organization to reduce the complexity of this prob-
lem. The vertical dimension of the cortical rectangle is only a few layers deep . The
horizontal dimension is variable. The number of states that a cortical region will have to
represent is typically much more than the number of cells that can be accommodated along
the vertical dimension of the cortical region. Thus it is reasonable to assume that the states
of the region are represented by neurons along the horizontal dimension of the cortical
region. We thus divide the horizontal dimension of the cortical region into a number of
compartments. We make the simplifying assumption that each compartment corresponds
to a particular state of the region.Note that this arrangement corresponds to a columnar
organization of the cortex as has been observed using several anatomical and physiological
experiments.

This leaves the vertical dimension for cells to support the Belief Propagation operations
related to various states of the region.Since we have five different equations and types of



cells as given by the Belief Propagation Equations, we divide the vertical dimension of the
cortical region into five compartments. This gives us a grid over which we can place cells.
Each rectangle in the grid can accommodate one cell.

With no constraints on placement we have M !(5!M ) different arrangements of the cells
within a grid on the idealized cortical region with M states. Knowing that the labeling of
the states are arbitrary, we can reduce them to number of meaningful arrangements equal to
(5!)M . From the pattern of connections illustrated in figure 2 and from the fact that we have
exactly 5 compartments in the vertical direction, we can conclude that the optimal solution
will have the same type of cell in any particular row of the grid. This insight, combined with
the columnar organization constraint helps us to reduce the number of search points from
5!M to 5! = 120. Thus the approximate optimization problem can be solved by exhaustive
search on these 120 possible configurations.

4 Length Function

For each of these configurations, we calculated the length function as follows. In the equa-
tions below, we let the symbol for a neuron type to mean its position within the configura-
tion in terms of the number of grid positions from the lower edge of the rectangle (figure
1(c)). Let M be the number of states of the region. We assume that the parent region also
has the same number of states. Nch is the number of children and h and w are the height
and with of a grid position. In the calculations below, we assume that the axons branch so
as to achieve the least cost wiring. Thus, the equations derived here depend on the order in
which different neuron types are placed on the grid. (But the total wiring length does not).
We assume that the cells are placed in the order we describe here.

The total length of axons and dendrites required for taking the feedforward inputs from
child regions to obtain λ(X) is calculated as

l1 = MNchh(C1 − 0.5) (8)

Calculation of the feedforward messages to be sent out to a higher level region requires
taking the outputs of C1 and operating them on according to equation 2 and figure 2 and
then sending the outputs to the bottom of the cortical region to be sent out to higher level
regions. This gives the total length of axons and dendrites required for this operation as

l2 = M(h |C1 − C2|+
M−1∑
i=1

(i− 1)w + 2Mh(C2 − 0.5) (9)

Calculating the internal values π(X) involves taking the feedback messages from a higher
level and operating on it according to equation 3. The required length for this operation can
be calculated as

l3 =



2Mh |C3 − C2|+ M
∑M−1

i=1 (i− 1)w if C3 > C2 > C1

Mh |C3 − C1|+ Mh |C3 − C2|+ M
∑M−1

i=1 (i− 1)w if C3 > C1 > C2

M
∑M−1

i=1 (i− 1)w if C2 > C3 > C1

Mh |C3 − C1|+ M
∑M−1

i=1 (i− 1)w if C2 > C1 > C3

Mh |C3 − C2|+ M
∑M−1

i=1 (i− 1)w if C1 > C2 > C3

Mh |C3 − C2|+ M
∑M−1

i=1 (i− 1)w if C1 > C3 > C2

(10)

The Belief states of a region are calculated according to equation 4. This requires taking
the outputs of cells C3 and cells C1 and multiplying them element-wise in cells C4. The
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Figure 3: (a) Plot of wiring length Vs configurations measured with the optimum configuration at
zero base-line . The position of C∗ (see text) is marked . (b) The laminar arrangement of neurons
and the connections between them corresponding to the C∗ configuration. Shown are two corti-
cal columns. The location of cells in this configuration and the connections between them match
anatomical data. (c) Laminar organization of cortical micro-circuits - anatomical data adapted from
[9] (permission pending). This is included here for the purpose of comparison.

total length of wires required for this operation is

l4 =

{ 2Mh |C4 − C3|+ Mh(C4 − 0.5) if C3 ∈ (C1, C4)
Mh |C4 − C1|+ Mh |C4 − C3|+ Mh(C4 − 0.5) if C1 ∈ (C3, C4)
Mh |C4 − C3|+ Mh(C4 − 0.5) if C4 ∈ (C1, C3)

(11)

Calculation for l5 is similar, but involves enumeration of 24 different cases.

Finally, the total length of connections for a particular configuration is calculated as

L = l1 + l2 + l3 + l4 + l5 (12)

This is the objective function we attempt to minimize over all configurations.

5 Results: Near-optimal solution Matches Anatomical and
Physiological Data

In order to find how the wiring length varies as a function of spatial arrangement of the
neurons, we evaluated the objective function described above at all the 120 configurations.
We sorted these configurations based on their wiring lengths and examined the configura-
tions starting with the ones with the least wiring lengths. We found that a configuration
with near-optimal wiring length matched the anatomical data to a great extent. This con-
figuration, denoted henceforth by C∗, is the second best in wiring length among all wiring
lengths, and is only slightly worse (10%) than the best solution when measured as a frac-
tion of the difference between the best and the worst. The spatial arrangement of cells
and the anatomical connections resulting from this configuration is shown in figure 3 (b).
The position of this configuration among other configurations is shown a wiring-length Vs
configurations plot in figure 3(a).

In C∗, the feed-forward inputs cortical regions in a lower level of the hierarchy rise to the
layer-4 cells. Layer 4 cells then project to layer 2 cells and also send an axon to layer
5 cells. The feedback axons coming from higher level cortical areas rise to layer 1 and
spread laterally. Layer 3 neurons with synapses in layer 1 are the targets of this feedback.
These layer 3 neurons project to layer 5 and layer 6. The layer 5 neurons project down sub-
cortically and the layer 6 neurons are the source of feedback to cortical areas hierarchically
below. The feed-forward axons that project to layer 4 also synapse in layer 6 to perform the
computations in equation 5. These details map on to the anatomical data obtained from [9].
In figure 3 (c) we compare this configuration with a schematic of anatomical data adapted
from [9].



The results of the wiring length minimization were independent of the number of states
of the region and the number of children. There were three optimal solutions and these
configurations shared many properties of the near-optimal solution we chose here for its
conformance to anatomical data. These solutions differ from C∗ by exactly one interchange
operation.

6 Implications

The mapping of Bayesian Belief Propagation on to the cortical microcircuit is of potential
implications to experimenters. This framework, can help understand and guide physiolog-
ical experiments. In this section we explore some of the predictions of this mapping and
their potential implications.

Anatomical data describe a class of layer 5 neurons that project to sub-cortical areas [9].
Our results implicate that these neurons carry the current Belief of a region. The current
Belief of a region could be be used for making actions or decisions. Emotionally relevant
beliefs could be stored for later recall. There are several sub-cortical modules that could
make use of the current Belief states of cortical regions. Although the details of the sub-
cortical projections are not known, the prediction that these projections carry the Beliefs of
a region is potentially significant.

In C∗ the cortical columns correspond to states of a cortical region. Typically, these cells
are divided into two categories- simple, and complex. However, this mapping tells us that
a more sophisticated explanation still consistent with the simple/complex mapping is pos-
sible. Layer 4 cells are consistently characterized as simple cells, and layer 2 cells are
consistently characterized as complex cells because they pool information from different
layer 4 cells. However, layer 3 cells, layer 5 cells and layer 6 cells that are normally charac-
terized as complex cells have a richer meaning. They combine contextual information from
higher levels with local information. If higher level context is ignored, and the receptive
fields of these cells are mapped using a pure feed-forward technique, they will correspond
to the complex cells characterization. However, when contextual effects are taken into ac-
count, these cells will have a more sophisticated meaning. For example, In a related study
[4], we showed how to explain illusory contours effect [5] and end-stopping effect using
Belief Propagation. Results from the current study show that the illusory contour cells
and end-stopping cells will be prevalent in layers 2-3 and layer 5. This is consistent with
experimental results [5].

This mapping also provides another way to interpret population coding. It is known that
cortical columns show a graded response to stimuli. This finding has been largely inter-
preted as a coarse coding mechanism. C∗ too predicts a graded response to stimuli [4].
However in this setting the graded responses correspond to the measure by which the stim-
uli is likely to belong to the different states of a cortical region. This is applicable at all
levels of the cortical hierarchy.

7 Discussion

We derived a cortical micro circuit and its layout within a laminar cortical architecture
based on the principles of Bayesian Belief Propagation and wiring length optimization.
The discover of a near-optimal solution that matches anatomical data is an encouraging
development. Several reasons can be cite for the sub-optimality of the solution. The major
reason is our ignorance of the exact constraints and objectives that are involved in cortical
organization.

We took into account only the role of excitatory neurons and connections in this study. We



think that inhibitory neurons play a very significant role in cortical computations. However,
we think that these roles are more in terms of keeping a good operating point for the com-
putationally relevant circuits. It is known that normalizing the messages and intermediate
values in BBP is required for numerical stability. Such normalization computations would
require inhibitory circuits. We think that inhibitory neurons play a significant role during
learning as well. We are currently investigating how to include these as part of the opti-
mization. Missing out the contributions from inhibitory neurons could also be one reason
for the sub-optimality of our solution.

Deciphering the functional connectivity of the cortical micro-circuit is a formidable task.
Several insights can be drawn by comparing it to reverse-engineering an electronic circuit.
Although a single transistor can function as an amplifier, a good amplifier is seldom con-
structed from a single transistor. A good construction involves a biasing circuitry which
makes sure that the amplifier works properly despite changing temperature conditions, dif-
ferent device characteristics, feedback instabilities etc. Its reasonable to expect that a sim-
ilar situation exists within the cortical sheet where a multitude of neurons are involved in
biasing a canonical cortical circuit to function. If the circuit is tested for connectivity when
it is not properly biased, one would end up missing some important connections and log-
ging some spurious connections. Hence, deciphering the functional connectivity from an
increasing amount of anatomical data would require theories about cortical functions and
how they map on to anatomy. We believe that our work is a contribution in that direction.
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